Short-term prediction of NO2 and NOx concentrations using multilayer perceptron neural network: a case study of Tabriz, Iran

نویسنده

  • Akbar Rahimi
چکیده

Introduction: Due to the health effects caused by airborne pollutants in urban areas, forecasting of air quality parameters is one of the most important topics of air quality research. During recent years, statistical models based on artificial neural networks (ANNs) have been increasingly applied and evaluated for forecasting of air quality. Methods: The development of ANN and multiple linear regressions (MLRs) has been applied to short-term prediction of the NO2 and NOx concentrations as a function of meteorological conditions. The optimum structure of ANN was determined by a trial and error method. We used hourly NOx and NO2 concentrations and metrological parameters, automatic monitoring network during October and November 2012 for two monitoring sites (Abrasan and Farmandari sites) in Tabriz, Iran. Results: Designing of the network architecture is based on the approximation theory of Kolmogorov, and the structure of ANN with 30 neurons had the best performance. ANN trained by scaled-conjugate-gradient (trainscg) training algorithm has implemented to model. It also demonstrates that MLP neural networks offer several advantages over linear MLR models. The results show that the correlation coefficient (R) values are 0.92 and 0/94 for NO2 and NOx concentrations, respectively. But in MLR model, R 2 values were 0.41 and 0.44 for NO2 and NOx concentrations, respectively. Conclusions: This work shows that MLP neural networks can accurately model the relationship between local meteorological data and NO2 and NOx concentrations in an urban environment compared to linear models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)

Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017